
 A new manner of crossing in the genetic algorithm for

 resolving Job Shop Problem (JSP)

SAID BOURAZZA
Mathematics Department

 Faculty of Science, Jazan University,
P. O. Box 2097 Jazan City,

KINGDOM OF SAUDI ARABIA.

Abstract: - The minimization of the makespan of the job shop problem with J jobs and M machines is NP-hard
problem. To resolve it we apply a genetic algorithm [1,2]. We use a real coding for the representation of
chromosomes. The originality of our variant lies by the choice of two effective crossover operators and one for
mutation, As well as their respective probability, determined by numeric simulations on several examples
known in the literature. We compare our results on ''OR library'' benchmarks [3] with Adamas and al. [4],
Ombuki and al [5] and Yamada and al [6] results.

Key-Words: - Job Shop Problem, Genetic Algorithm.

Received: January 2, 2020. Revised: April 8, 2020. Accepted: April 23, 2020. Published: April 30,
2020.

1 Introduction

The job shop problem of type (J, M) contains M
machines serving for producing J jobs. Every job
consists of a number of operations which can be
executed in a prescribed order. Every operation can
be executed only on a single machine and every
machine can realize only one operation at the same
moment. The objective is to find a practicable
scheduling which minimizes the total duration of the
production of all the jobs (the minimization of
''Makespan''). It is the difference between the date of
the end of the last operation of all the jobs and the
date of the beginning of the first operation of this
set. It is a problem of optimization NP-hard. To
resolve it we apply a genetic algorithm [1, 2]. We
use a real coding for the representation of
chromosomes. The originality of our variant lies by
the choice of two effective crossover operators and
one for mutation, As well as their respective
probability, determined by numeric simulations on
several examples known in the literature. We
compare our results on ''OR library'' benchmarks [3]
with Adamas and al. [4], Ombuki and al [5] and
Yamada and al [6] results.

2 Problem Formulation
First, The Job-Shop is a scheduling problem in

workshops. it contains two classical problems
of the combinatorial optimization : the
problem of affectation and the problem of

scheduling. The problem can be characterized
as follows:
 A set of M machines and a set of J jobs.
 Each job must be processed on each

machine in the order given in a predefined
technological sequence of machines. Each
job consists of a fixed predefined
technological operations Oi,j .

 Oi,j representing the jth operation of the
job i . This operation requires a processing
time Pi,j.

 Oi,j require to be realized on one machine.
It is subject to the following constraints:

 The machines are independents some of the
others;

 Each machine can process only one job at a
time;

 Each operation started cannot be stopped in
its processing time ;

 The jobs are independents some of the
others.

The time required to complete all jobs is called the
makespan which is denoted as Cmax . A
schedule is a set of completion times for each
operation that satisfies above constraints. the
purpose of the scheduling is to minimize
Cmax.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.7 Said Bourazza

E-ISSN: 2415-1521 39 Volume 8, 2020

2.1 Subsection
When including a subsection you must use, for its
heading, small letters, 12pt, left justified, bold,
Times New Roman as here.

2.1.1 Sub-subsection

When including a sub-subsection you must use, for
its heading, small letters, 11pt, left justified, bold,
Times New Roman as here.

3 Genetic algorithm

The genetic algorithm belongs to the family of the
evolution algorithm. They are inspired by the
creed of the nature: the survival for the most
adapted individuals.

They aroused the interest of the researchers, started
by Holland [7] who developed the fundamental
principles, passing by Goldberg [8] who used
them to resolve concrete problems of
optimization. Other researchers followed this
way notably Davis [9], Mahfoud ([10] and
[11]), Michalewicz ([12] and [13]), etc.

3.1. Our Genetic algorithm

The general framework for our genetic algorithm
expressed as:
Generate the initial population called P1 of size N
and calculate the fitter of P1
Repeat
P2 and P3 are empties set
for 1 to N do
Select randomly one individual from P1
Crossing this individual with the fitter
Add the two child into P2
od
for 1 to N do
Select randomly one individual from P1
Add Mutating individual into P3
od
Ranking P1 and P2
P1=(N/2 of fitter individuals of P2) U (N/2 of fitter
individuals of P2)
Calculate fitter of P1
Until termination, where all individuals of P1 have
the same fitness

 3.1.1. Genetic encoding of a schedule

An example of a job shop problem with 3 jobs and
3 machines is given in Table [1]. The data
include the technological sequence of machines
for each job with the processing times in

parentheses. In the table, operations for job 0,
for example, are processed in the order of O00
, O01, O02 ; i.e., job 0 is first processed on
machine 2 with its processing time 3, and then
processed on machine 1 with its processing
time 6, and then processed on machine 0 with
its processing time 2.

Job i Oij Machine (processing time)
Job 0 O00 2 (3) O011 (6) O020 (2)
Job 1 O10 0 (2) O11 1 (5) O122 (2)
Job 2 O20 1(1) O21 0 (2) O222 (1)
Table1: An example of the job shop scheduling

problem with 3 jobs and 3 machines.

Each arrow represents the technological sequence of
machines for each job with the processing times in
parentheses. In the first, the sum of all operations in
this example is 9. We grant to every operation a
number between 0 and 8 by respecting the order of
the operations for every job. So, three operations of
the job 0 will have for code 0, 1 and 2. For the job 1,
the operations are numbered 3, 4 and 5. And finally,
the operations 6, 7 and 8, in this order, constitute the
job 2.
A chromosome is coded by a table of integers from
0 to 8 which respects the order between the
operations of the same job. So 0 corresponds to the
operation O00, 5 corresponds at O11.... The table of
integers [0, 3, 1, 4, 6, 7, 2, 5, 8] corresponds to a
feasible scheduling of the operations on machines. It
is not the case for [0, 3, 1, 5, 4, 2, 6, 7, 8]. Indeed,
the operation 5 precedes the operation 4 what does
not respect the order predefined by the technological
sequence of the machines for the job 1.
3.1.2. Initial population

The initial population is randomly generated. A
chromosome is constituted by M*J genes
corresponding to the operations. We choose at
random one job. In this job, we select one operation
not yet marked. This operation will be placed in the
chromosome. This operation will be distinguished
and marked. If the same job is chosen after that, the
successor of the old operation will be placed in the
chromosome and will be marked. If all the
operations of a job were placed in the chromosome
then this job will be marked so that it is not any
more chosen afterward. The procedure which
generates a chromosome is clarified below:
integers j, k, l, idx, tmp, compteur
integers J, M
Tab, chrom : two table of integers with length J * M
job : Table of integers with length J
for j from 0 to (J * M)
 | Tab[j] = j
end for j

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.7 Said Bourazza

E-ISSN: 2415-1521 40 Volume 8, 2020

for j from 0 to J
 | job[j] = j
end for j
j = 0
While (j < J * M) do
| tic: l = random number between 0 and (J 1)
| If(job[l]==1) goto tic
| End if
| compteur = 0
| for idx from l * M to ((l+1) * M)1
| | if (Tab[idx] != 1) chrom[j] = Tab[idx]
| | | Tab[idx] = 1
| | | j = j+1
| | | exit from this lap of idx
| | |
| | else compteur = compteur +1
| | | if(compteur == M) job[l] = 1
| | | | goto tic
| | | end if
| | end if
| end for
end while
3.1.3.Calcul of Makespan

The makespan is the duration operating total
between the date of the end of the last operation
of the scheduling and the date of the beginning
of its first operation. To calculate the
makespan, it is necessary to know the date of
the beginning of every operation on its machine
of production. We define respectively Pij , Tij
and Fij , processing time, the date of the
beginning and the end of every operation Oij .
Pij is obtained from the problem; Fij is given
by the follow formula : Fij = Tij +Pij ; Tij is
given by : Tij = max { Fi(j-1) , Thl + Phl} With
Ohl is the previous operation of Oij on the
machine Mij and Fi(j-1) is the date of the end
of the operation, which precedes Oij , in the
job i . We found two cases:

 If Oij is the first operation of the job i then Fi(j-1)
= 0 .

 If Oij is the first operation executed on the Mij
machine then Fhl = Thl + Phl is replaced with 0.

The makespan is the maximum of the dates of the
end of the last operations for every job:

 Cmax= max {Fhl}.
3.1.4. Selection method

The purpose of this method is to choose the
individuals subject to the crossover operator
and for mutation operator. For applying the
crossover operator, we take the best individual
and we picked randomly one from the former
population. And for mutation, we choose

randomly one individual from the former
population.

 3.1.5. Crossover operator

We used two operators of crossover in the same
time. The first is edrx crossover given by
Whitley [15], and the second is Cedrx.

3.1.5.1.Edge recombination operator (edrx
by Whitley [15]): From the two parents,
we construct a table that gives for each gene
his adjacent neighbors. For example, the
gene 1 has for neighbors in parent 1 the
genes 2 and 7, and in the parent 2 the genes
5 and 3.
 *

parent1 1 2 3 4 5 6 7
parent2 7 5 1 3 2 6 4

Neighbor

table

1 2 3 4 5 6 7

2 1 2 3 4 5 6
7 3 4 5 6 7 1
5 6 1 6 7 2 4
3 7 1 4 5

TABLE 2: EDGE RECOMBINATION OPERATOR (EDRX).

To get the child1, we choose randomly the first
gene of the child1 from the parent 1. His
successor will be selected from the table of
neighbors of the first gene with respecting the
following rules:

 The gene that will be elected must have the
smallest number of distinct neighbors.

 If we find several genes that verify the condition
above, then we will choose between them one
randomly.

The elected gene is placed in the child1 and is
removed immediately from the table of
neighbors. We restart until the total
construction of the child1.

3.1.5.2. Complementary Edge recombination
operator (Cedrx): This operator is
performed as like as edrx in the construction
of the neighbor table. But, for making
child, we choose the successor of one gene
outside of his column in the neighbor table
and not yet used in child.

 3.1.6. JSP mutation operator:

It avoids to establishing uniform populations
unable to evolve. It consists in modifying the
values of the genes of chromosomes from those
of a single parent. If one chromosome is
choosing for the mutation operator, we
determined a machine which Fij equal to

child1 2 3 1 5 4 7 6

child2 5 1 3 2 6 4 7

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.7 Said Bourazza

E-ISSN: 2415-1521 41 Volume 8, 2020

Cmax. On this machine, we looking for job
corresponding to the last operation. We choose
randomly another job to exchange the locations
of all operations belong in this two jobs with
saving the order defined by technological
sequence of the two jobs. This operator is
described below:

integers machcritiq, tmp,job, job1, k1, k2
integers indice1, indice2
integers dernierjob, dernierop
integers i, j
machcritiq = the critical machine who realized the

makespan
dernierop = the last operation executed on

machcritiq machine
dernierjob = dernierop /M
Do job = random between 0 and (J 1)
While(job == dernierjob)
For i from 0 to (M 1)
| k1 = job * i
| k2= dernierjob*i
| For j from 0 to (J*M 1)
| | if (k1 == chrom[j]) indice1 = j
| | endif
| | if (k2 == chrom[j]) indice2 = j
| | endif
| end for j
| tmp = chrom[indice1]
| chrom[indice1] = chrom[indice2]
| chrom[indice2] = tmp
end for i

3.2. Mechanism to repair the generated
individuals:

The chromosomes obtained by the crossover
operator are not always feasible. We used a
repair machanism of this childs to remove this
anomalies. This mechanism respects the
technological sequence of all jobs. It’s rectifies
this chromosomes.

Chrom : table of integers with length M * J
integers : tmp, i, j, k
tab : table of integers with length J * M
for i from 0 to J * M
| tmp = chrom[i]
| tab[i] = The job container the operation tmp
end for i
for i from 0 to (J1)
| k = i * M
| for j from 0 to (J*M 1)
| | if (tab[j] == i) chrom[j] = k
| | | k = k+1
| | endif
| end for j

end for i

4. Numerical results
We write our program in the C language on the

Intel(R) Pentium(R) 4 PC machine with CPU
2593.547 Mhz. This machine used Linux
Mandrake operating system. We use
benchmarks [3].

Our genetic algorithm is based on:
 Size of the population 200,
 Two Crossover operator,
 The mechanism of repair,
 Jsp mutation operator.

We recapitulate the results, in the following table 2:
Inst.

 [3]

J M

M.S.C

.

 sGA

gkG

A

LSGA

[5]

 our

GA

La01 1
0

5 666 667 677 666 666

La05 1
5

5 593 593 593 593 593

La06 1
5

5 926 926 926 926 926

La07 1
5

5 890 891 890 890 890

La08 1
5

5 863 863 863 863 863

La09 1
5

5 951 951 951 951 951

La10 1
5

5 958 958 958 958 958

La11 2
0

5 1222 1222 124
1

1222 1222

La12 2
0

5 1039 1039 103
9

1039 1039

La13 2
0

5 1150 1150 115
0

1150 1150

La14 2
0

5 1292 1292 129
2

1292 1292

La15 2
0

5 1207 1256 130
2

1207 1207

The results obtained by Ombuki et al. and our

results based on benchmarks obtained from
''OR library''

 The column M.S.C. give the best fitness knowing
for this benchmarks ;

 The column sGA give thes values obtained by
Ombuki et al [5] using

genetic algorithm based only on mutation operator ;
 The column gkGA makes references to the values

found by Ombuki et al. [13] ;
 The column LSGA give the new values obtained

by Ombuki et al [5].
The results find by our algorithm are equal with

LSGA and better than the other algorithms
''sGA'' and ''gkGA''.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.7 Said Bourazza

E-ISSN: 2415-1521 42 Volume 8, 2020

5. Conclusion
 In this paper, we present a new variant of genetic
algorithm. The peculiarity of this variant lies in: The
way of coding the chromosomes (the representation
of the individuals) which contributed effectively to
the decrease of the fitness on one hand and to
respect the scheduling of the operations of every job
on the other hand; Cedrx is new operator of
crossover not allowed to lost quickly the diversity of
individuals in population. We used in the same time
two operators of crossover, We use two intermediate
populations, one for the individuals obtained with
crossing and second for this obtained with mutation.
Its allowed to take out of local minimum and to
obtain the best results, The numerical experiments
showed the efficiency and the robustness of our
algorithm. Indeed, in most of the cases, he gives the
best values of the objective function till now
published.

References:

[1] S. Bourazza: “Evaluation of the Operators of
the Genetic Algorithm in Application of the
Traveling Salesman Problem”. Int. J. of Adv.
Res. 6 (2). 42-52, 2018. (ISSN 2320-5407)

[2] S. Bourazza, A. Yassine, and S. Gueye : Un
algorithme génétique pour un problème
d'ordonnancement des véhicules dans une
usine, 12èmes Journées MODE SMAI,
Université du Havre, Mars 2004..

[3] OR Library site :
http://www.brunel.ac.uk/depts/ma/research/jeb
/ info.html.

[4] J. Adams, E. Balas and D. Zawack : The
shifting bottleneck procedure for job shop
scheduling. Journal Manage. Sci., vol. 34, n 3,
1988.

[5] B. Ombuki and M.Ventresca : Local search
algorithms for job shop scheduling problem.
Technical report, november 2002.

[6] T. Yamada and R. Nakano : Job Shop
Scheduling. Genetic Algorithms in
Engineering Systems, IEE control Engineering
series 55, pp. 134160, 1997.

[7] J. H. Holland. Adaptation in Natural and
Artificial Systems. The University of
Michigan, 1975.

[8] D. Goldberg. Genetic Algorithm in Search,
Optimization, and Machine Learning. Addison
Wesley, 1989.

[9] L. Davis, D. Orvosh, A. Cox and Y. Qiu. A
Genetic Algorithm for Survivable Network
Design. ICGA 1993: 408415

[10] S.W. Mahfoud and D.E. Goldberg. A
Genetic Algorithm for Parallel Simulated
Annealing. eds., Parallel Problem Solving
from Nature 2, Elsevier,1992, 301310.

[11] S.W. Mahfoud and D.E. Goldberg. Parallel
recombinative simulated annealing: a genetic
algorithm. Parallel Computing 21, 1995, 128.

[12] Z. Michalewicz and D.B. Fogel. How to
solve it: Modern heuristics. Springer Verlag,
2000.

[13] B.Ombuki, M. Nakamura, and K.Onaga, An
Evolutionary Scheduling Scheme Based on
gkGA Approach for the Job Shop Scheduling
Problem, IEICE Transactions on
Fundamentals of Electronics, Communications
and Computer Science, Vol. E81A, N0.6,
1988.

[14] L. Davis. Applying Adaptive Algorithms to
Epistatic Domains.In Proc. International Joint
Conference on Artificial Intelligence, 1985.
[15] D. Whitley, T. Starkweather, and D. Fuquay.
Scheduling Problems and Traveling Salesman: The
Genetic Edge Recombination Operator. In Proc.
Third Int'l. Conference on Genetic Algorithms and
their Applications. J. D. Shaeffer, ed. Morgan
Kaufmann, 1989.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.7 Said Bourazza

E-ISSN: 2415-1521 43 Volume 8, 2020

