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1 Introduction 

The job shop problem of type (J, M) contains M 
machines serving for producing J jobs. Every job 
consists of a number of operations which can be 
executed in a prescribed order. Every operation can 
be executed only on a single machine and every 
machine can realize only one operation at the same 
moment. The objective is to find a practicable 
scheduling which minimizes the total duration of the 
production of all the jobs (the minimization of 
''Makespan''). It is the difference between the date of 
the end of the last operation of all the jobs and the 
date of the beginning of the first operation of this 
set. It is a problem of optimization NP-hard. To 
resolve it we apply a genetic algorithm [1, 2]. We 
use a real coding for the representation of 
chromosomes. The originality of our variant lies by 
the choice of two effective crossover operators and 
one for mutation, As well as their respective 
probability, determined by numeric simulations on 
several examples known in the literature. We 
compare our results on ''OR library'' benchmarks [3] 
with Adamas and al. [4], Ombuki and al [5] and 
Yamada and al [6] results. 

 

2 Problem Formulation 
First, The Job-Shop is a scheduling problem in 

workshops. it contains two classical problems 
of the combinatorial  optimization : the 
problem of affectation and  the problem of 

scheduling. The problem can be characterized 
as follows: 
  A set of  M  machines and a set of  J  jobs. 
 Each job must be processed on each 

machine in the order given in a predefined 
technological sequence of machines. Each 
job consists of a fixed predefined 
technological operations  Oi,j . 

   Oi,j  representing the  jth operation of the 
job  i . This operation requires a processing 
time  Pi,j. 

   Oi,j  require to be realized on one machine.  
It is subject to the following constraints: 

  The machines are independents some of the 
others; 

  Each machine can process only one job at a 
time; 

  Each operation started cannot be stopped in 
its processing time ; 

  The jobs are independents some of the 
others. 

The time required to complete all jobs is called the 
makespan which is denoted as  Cmax  . A 
schedule is a set of completion times for each 
operation that satisfies above constraints. the 
purpose of the scheduling is to minimize  
Cmax. 
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2.1 Subsection 
When including a subsection you must use, for its 
heading, small letters, 12pt, left justified, bold, 
Times New Roman as here.  
 
2.1.1 Sub-subsection  

When including a sub-subsection you must use, for 
its heading, small letters, 11pt, left justified, bold, 
Times New Roman as here. 
 
 

3  Genetic algorithm 

The genetic algorithm belongs to the family of the 
evolution algorithm. They are inspired by the 
creed of the nature: the survival for the most 
adapted individuals. 

They aroused the interest of the researchers, started 
by Holland [7] who developed the fundamental 
principles, passing by Goldberg [8] who used 
them to resolve concrete problems of 
optimization. Other researchers followed this 
way notably Davis [9], Mahfoud ([10] and 
[11]), Michalewicz ([12] and [13]), etc. 

3.1. Our Genetic algorithm 

The general framework for our genetic algorithm 
expressed as:  
Generate the initial population called P1 of size N 
and calculate the fitter of P1 
Repeat 
P2 and P3 are empties set  
for 1 to N do 
Select randomly one individual from P1 
Crossing this individual with the fitter 
Add the two child into P2 
od 
for 1 to N do 
Select randomly one individual from P1 
Add Mutating individual into P3 
od 
Ranking P1 and P2 
P1=(N/2 of fitter individuals of P2) U (N/2 of fitter 
individuals of P2) 
Calculate fitter of P1 
Until termination, where all individuals of P1 have 
the same fitness 

 3.1.1. Genetic encoding of a schedule 

An example of a job shop problem with 3 jobs and 
3 machines is given in Table [1]. The data 
include the technological sequence of machines 
for each job with the processing times in 

parentheses. In the table, operations for job 0, 
for example, are processed in the order of  O00 
, O01, O02 ; i.e., job 0 is first processed on 
machine 2 with its processing time 3, and then 
processed on machine 1 with its processing 
time 6, and then processed on machine 0 with 
its processing time 2. 

Job i Oij                  Machine (processing time) 
Job 0  O00   2 (3)   O011 (6)   O020 (2)   
Job 1  O10 0 (2)   O11 1 (5)   O122 (2)   
Job 2   O20 1(1)   O21 0 (2)   O222 (1)   
Table1:  An example of the job shop scheduling 

problem with 3 jobs and 3 machines. 
 

Each arrow represents the technological sequence of 
machines for each job with the processing times in 
parentheses. In the first, the sum of all operations in 
this example is 9. We grant to every operation a 
number between 0 and 8 by respecting the order of 
the operations for every job. So, three operations of 
the job 0 will have for code 0, 1 and 2. For the job 1, 
the operations are numbered 3, 4 and 5. And finally, 
the operations 6, 7 and 8, in this order, constitute the 
job 2.  
A chromosome is coded by a table of integers from 
0 to 8 which respects the order between the 
operations of the same job. So 0 corresponds to the 
operation O00, 5 corresponds at O11.... The table of 
integers [0, 3, 1, 4, 6, 7, 2, 5, 8] corresponds to a 
feasible scheduling of the operations on machines. It 
is not the case for [0, 3, 1, 5, 4, 2, 6, 7, 8]. Indeed, 
the operation 5 precedes the operation 4 what does 
not respect the order predefined by the technological 
sequence of the machines for the job 1. 
3.1.2. Initial population 

The initial population is randomly generated. A 
chromosome is constituted by M*J genes 
corresponding to the operations. We choose at 
random one job. In this job, we select one operation 
not yet marked. This operation will be placed in the 
chromosome. This operation will be distinguished 
and marked. If the same job is chosen after that, the 
successor of the old operation will be placed in the 
chromosome and will be marked. If all the 
operations of a job were placed in the chromosome 
then this job will be marked so that it is not any 
more chosen afterward. The procedure which 
generates a chromosome is clarified below: 
integers j, k, l, idx, tmp, compteur 
integers J, M 
Tab, chrom : two table of integers with length J * M 
job : Table of integers with length J 
for j from 0 to (J * M) 
    | Tab[j] = j 
end for j 
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for j from 0 to J 
    | job[j] = j 
end for j 
j = 0 
While (j < J * M) do 
| tic: l = random number between 0 and (J 1) 
| If(job[l]==1) goto tic 
| End if 
| compteur = 0 
| for idx from l * M to ((l+1) * M)1 
| | if ( Tab[idx] != 1 ) chrom[j] = Tab[idx] 
| | | Tab[idx] = 1 
| | | j = j+1 
| | | exit from this lap of idx 
| | | 
| | else compteur = compteur +1 
| | | if(compteur == M) job[l] = 1 
| | | | goto tic 
| | | end if  
| | end if 
| end for 
end while 
3.1.3.Calcul of Makespan 

The makespan is the duration operating total 
between the date of the end of the last operation 
of the scheduling and the date of the beginning 
of its first operation. To calculate the 
makespan, it is necessary to know the date of 
the beginning of every operation on its machine 
of production. We define respectively Pij  ,  Tij  
and   Fij  , processing time, the date of the 
beginning and the end of every operation Oij .  
Pij  is obtained from the problem;  Fij  is given 
by the follow formula : Fij = Tij +Pij  ;  Tij  is 
given by :  Tij = max  { Fi(j-1) , Thl + Phl}  With  
Ohl  is the previous operation of  Oij   on the 
machine  Mij  and  Fi(j-1)  is the date of the end 
of the operation,  which precedes  Oij  , in the 
job  i . We found two cases: 

  If  Oij is the first operation of the job  i  then  Fi(j-1) 
= 0 . 

  If  Oij  is the first operation executed on the Mij 
machine then  Fhl = Thl + Phl  is replaced with 0. 

The makespan is the maximum of the dates of the 
end of the last operations for every job: 

  Cmax= max {Fhl}.   
3.1.4. Selection method 

The purpose of this method is to choose the 
individuals subject to the crossover operator 
and for mutation operator. For applying the 
crossover operator, we take the best individual 
and we picked randomly one from the former 
population. And for mutation, we choose 

randomly one individual from the former 
population.  

 3.1.5. Crossover operator 

We used two operators of crossover in the same 
time. The first is edrx crossover given by 
Whitley [15], and the second is Cedrx. 

3.1.5.1.Edge recombination operator (edrx 
by Whitley [15]): From the two parents, 
we construct a table that gives for each gene 
his adjacent neighbors. For example, the 
gene 1 has for neighbors in parent 1 the 
genes 2 and 7, and in the parent 2 the genes 
5 and 3.  
    *      

parent1   1 2 3 4 5 6 7  
parent2    7 5 1 3 2 6 4  

 
Neighbor 

table 

1 2 3 4 5 6 7  

2 1 2 3 4 5 6  
7 3 4 5 6 7 1  
5 6 1 6 7 2 4  
3     7 1 4 5  

 
 
 
 
 

TABLE 2: EDGE RECOMBINATION OPERATOR (EDRX). 
 

To get the child1, we choose randomly the first 
gene of the child1 from the parent 1. His 
successor will be selected from the table of 
neighbors of the first gene with respecting the 
following rules:  

  The gene that will be elected must have the 
smallest number of distinct neighbors.  

  If we find several genes that verify the condition 
above, then we will choose between them one 
randomly.  

The elected gene is placed in the child1 and is 
removed immediately from the table of 
neighbors. We restart until the total 
construction of the child1.  

3.1.5.2. Complementary Edge recombination 
operator (Cedrx): This operator is 
performed as like as edrx in the construction 
of the neighbor table. But,  for making 
child, we choose the successor  of one gene 
outside of his column in the neighbor table 
and not yet used in child. 

 3.1.6. JSP mutation operator: 

It avoids to establishing uniform populations 
unable to evolve. It consists in modifying the 
values of the genes of chromosomes from those 
of a single parent. If one chromosome is 
choosing for the mutation operator, we 
determined a machine which Fij equal to 

child1 2 3 1 5 4 7 6 

child2 5 1 3 2 6 4 7 
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Cmax. On this machine, we looking for job 
corresponding to the last operation. We choose 
randomly another job to exchange the locations 
of all operations belong in this two jobs with 
saving the order defined by technological 
sequence of the two jobs. This operator is 
described below: 

 
integers machcritiq, tmp,job, job1, k1, k2 
integers indice1, indice2 
integers dernierjob, dernierop 
integers i, j 
machcritiq = the critical machine who realized the 

makespan 
dernierop = the last operation executed on 

machcritiq machine 
dernierjob = dernierop /M 
Do job = random between 0 and (J 1) 
While(job == dernierjob) 
For i from 0 to (M 1) 
| k1 = job * i 
| k2= dernierjob*i 
| For j from 0 to (J*M 1) 
| | if (k1 == chrom[j]) indice1 = j 
| | endif 
| | if (k2 == chrom[j]) indice2 = j 
| | endif 
| end for j 
| tmp = chrom[indice1] 
| chrom[indice1] = chrom[indice2] 
| chrom[indice2] = tmp 
end for i 

3.2. Mechanism to repair the generated 
individuals: 

The chromosomes obtained by the crossover 
operator are not always feasible. We used a 
repair machanism of this childs to remove this 
anomalies. This mechanism respects the 
technological sequence of all jobs.  It’s rectifies 
this chromosomes.  

Chrom : table of integers with length M * J 
integers : tmp, i, j, k 
tab : table of integers with length J * M 
for i from 0 to J * M 
| tmp = chrom[i] 
| tab[i] = The job container the operation tmp 
end for i 
for i from 0 to (J1 ) 
| k = i * M 
| for j from 0 to ( J*M 1) 
| | if (tab[j] == i) chrom[j] = k 
| | | k = k+1 
| | endif 
| end for j 

end for i 
 

4. Numerical results  
We write our program in the C language on the 

Intel(R) Pentium(R) 4 PC machine with CPU 
2593.547 Mhz. This machine used Linux 
Mandrake operating system. We use  
benchmarks [3]. 

Our genetic algorithm is based on: 
 Size of the population 200, 
 Two Crossover operator, 
 The mechanism of repair, 
 Jsp mutation operator. 

We recapitulate the results, in the following table 2: 
Inst. 

 [3]  

J M  

M.S.C

. 

 sGA  

gkG

A 

 

LSGA  

[5] 

 our 

GA  

La01 1
0 

5 666 667 677 666 666  

La05 1
5 

5 593 593 593 593 593  

La06 1
5 

5 926 926 926 926 926  

La07 1
5 

5 890 891 890 890 890  

La08 1
5 

5 863 863 863 863 863  

La09 1
5 

5 951 951 951 951 951  

La10 1
5 

5 958 958 958 958 958  

La11 2
0 

5 1222 1222 124
1 

1222 1222  

La12 2
0 

5 1039 1039 103
9 

1039 1039  

La13 2
0 

5 1150 1150 115
0 

1150 1150  

La14 2
0 

5 1292 1292 129
2 

1292 1292  

La15 2
0 

5 1207 1256 130
2 

1207 1207 

 
The results obtained by Ombuki et al. and our 

results based on benchmarks obtained from 
''OR library'' 

  The column M.S.C. give the best fitness knowing 
for this benchmarks ; 

  The column sGA give thes values obtained by 
Ombuki et al [5] using 

genetic algorithm based only on mutation operator ; 
  The column gkGA makes references to the values 

found by Ombuki et al. [13] ; 
  The column LSGA give the new values obtained 

by Ombuki et al [5]. 
The results find by our algorithm are equal with 

LSGA and better than the other algorithms 
''sGA'' and ''gkGA''. 
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5. Conclusion 
 In this paper, we present a new variant of genetic 
algorithm. The peculiarity of this variant lies in: The 
way of coding the chromosomes (the representation 
of the individuals) which contributed effectively to 
the decrease of the fitness on one hand and to 
respect the scheduling of the operations of every job 
on the other hand; Cedrx is new operator of 
crossover not allowed to lost quickly the diversity of 
individuals in population.  We used in the same time 
two operators of crossover, We use two intermediate 
populations, one for the individuals obtained with 
crossing and second for this obtained with mutation. 
Its allowed to take out of local minimum and to 
obtain the best results, The numerical experiments 
showed the efficiency and the robustness of our 
algorithm. Indeed, in most of the cases, he gives the 
best values of the objective function till now 
published. 
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